递归:递归是什么?用斐波那契数列举例,初学者也能懂
这篇文章用生活化的例子和经典案例讲解了递归的概念。递归是将大问题分解为更小的同类问题,直到问题小到可直接解决(终止条件),再通过小问题结果反推大问题结果的方法,核心是“分解”与“终止”。 以斐波那契数列为例,其递归定义为:F(0)=0,F(1)=1,n>1时F(n)=F(n-1)+F(n-2)。计算F(5)时,需先算F(4)和F(3),依此类推,直到分解到F(0)或F(1)(终止条件),再逐层返回结果。递归的关键是必须有明确终止条件(如n=0、1),且每次调用规模递减,否则会无限循环。 Python代码实现简洁:`def fibonacci(n): if n==0: return 0; elif n==1: return 1; else: return fibonacci(n-1)+fibonacci(n-2)`。递归代码优雅但计算大数字(如F(100))时效率低于迭代法,体现了“以退为
Read More链表:单链表与双链表的区别,初学者一看就会
文章以游戏玩家列表存储为例,说明链表解决数组删除中间元素需移动节点的问题。链表是由节点组成的线性结构,节点含数据域和指针域,非连续内存存储,插入删除仅需修改指针。 单链表最简单,节点仅含next指针,单向遍历(从头至尾),插入删除需先找前驱节点改指针,省内存,适合单向场景(如队列)。 双链表节点多一个prev指针,支持双向遍历,插入删除直接通过prev/next指针操作,无需找前驱,内存稍高,适合双向操作(如浏览器历史、通讯录)。 单双链表对比:单链表结构简单省内存,双链表功能全但稍占内存。根据需求选择:单向用单链表,双向或频繁操作用双链表。
Read More异常处理入门:try-except结构让你的程序更健壮
Python异常是程序运行中的意外错误(如除零、输入错误等),不处理会导致程序崩溃。`try-except`结构可优雅处理异常,提升程序健壮性。 `try`块包裹可能出错的代码(如输入、文件读取),`except`块处理指定异常类型(如`ValueError`、`ZeroDivisionError`)。多个`except`需按异常具体程度排序,避免更宽泛的异常拦截具体异常。 实战中,如处理除法计算,`try`块尝试输入整数并计算商,`except`捕获非整数输入或除数为0的错误,给出明确提示。`else`块在`try`无异常时执行成功逻辑,`finally`块必执行(如关闭文件,避免资源泄露)。 最佳实践:使用具体异常类型,明确错误提示,合理搭配`else`/`finally`,避免过度捕获(如空`except`或直接捕获`Exception`)。
Read MoreHow to Understand Recursion? Easily Learn Recursion with the Fibonacci Sequence
Recursion is a problem-solving method that "calls itself", breaking down large problems into smaller, similar subproblems until the subproblems can be solved directly, then returning results layer by layer (like disassembling Russian nesting dolls). Its core elements are the **base case** (to avoid infinite loops, e.g., returning fixed values when n=0 or n=1) and the **recursive relation** (decomposing into subproblems, e.g., F(n) = F(n-1) + F(n-2)). Taking the Fibonacci sequence as an example, the recursive function `fib(n)` is implemented through the base case and recursive relation: `fib(0) = 0`, `fib(1) = 1`, and `fib(n) = fib(n-1) + fib(n-2)`. For `fib(5)`, it requires recursively calculating `fib(4)` and `fib(3)`, decomposing layer by layer until `fib(1)` and `fib(0)` are reached, then combining the results in reverse to get the final answer. The recursive process is like "peeling an onion": after reaching the bottom, results "bounce back". Its advantages include clear logic and ease of implementation, but it has redundant calculations (e.g., `fib(3)` is called multiple times), leading to lower efficiency—optimizations like memoization or iteration can be used. In essence, recursion transforms large problems into smaller ones, and smaller problems... (Note: The original Chinese summary appears truncated here; the above translation completes the core description.)
Read MoreStacks in Daily Life: Why Are Stacks the First Choice for Data Structure Beginners?
The article introduces "stack" through daily scenarios such as stacking plates and browser backtracking, with its core feature being "Last-In-First-Out" (LIFO). A stack is a container that can only be operated on from the top, with core operations being "Push" (pushing onto the stack) and "Pop" (popping from the stack). As a first choice for data structure introduction, the stack has a simple logic (only the LIFO rule), clear operations (only two basic operations), extensive applications (scenarios like bracket matching, browser backtracking, recursion, etc.), and can be easily implemented using arrays or linked lists. It serves as a foundation for learning subsequent structures like queues and trees, helps establish clear programming thinking, and is a "stepping stone" for understanding data structures.
Read More