Setting Up a Cloud Service Platform on CentOS

This article provides a detailed introduction to the process of creating a cloud server using KVM on CentOS systems. Below is a summary of key steps and precautions: ### I. Environment Preparation - **Install necessary software packages**: ```bash sudo yum install -y bridge-utils libvirt virt-install qemu-kvm iptables ``` ### II. Configure Network Bridging 1. **Create a network bridge device**:

Read More
An Initial Understanding of TensorFlow

This note provides a detailed introduction to the process of training a 3-layer neural network using TensorFlow for handwritten digit recognition. The main content and key points of the note are as follows: 1. **Dataset Preparation**: - The MNIST dataset was loaded using the `load_dataset()` function. - The images in the dataset were reshaped to a size of 28x28, and the labels were one-hot encoded. 2. **Creating Placeholders**: - The dimensions of the input and output were defined, and placeholders were created to store the features and

Read More
Gradient Checking in Deep Learning Neural Networks

Thank you for your sharing and explanation! Indeed, Gradient Checking can effectively verify whether the gradient calculations in the backpropagation algorithm are correct. This technique is very useful when implementing deep learning models, as it helps us detect and correct issues in the code early on. For beginners, it is crucial to understand the processes of forward propagation, backpropagation, and gradient checking. The key points you mentioned—such as converting parameters and gradients into vector form for calculations, using small perturbations to approximate numerical gradients, and evaluating the reverse (comparing the differences between the two)—are essential for ensuring the correctness of the gradient computations.

Read More
Theoretical Knowledge Points of "Improving Deep Neural Networks"

### Practical Deep Learning and Optimization - **Dataset Splitting**: A common split ratio is 98% for training, 1% for validation, and 1% for testing. Increasing data volume or applying regularization can improve model performance. Validation and test sets should be from the same distribution. Adjusting regularization parameters helps reduce overfitting. - **Optimization Algorithms**: Mini-batch gradient descent is faster than full batch processing; the ideal mini-batch size ranges between 1 and m. Exponential weighted averages are used to track data changes; learning rate decay techniques like \(0.95^t \alpha_0\) and \(\frac{\alpha_0}{\sqrt{t}}\) are effective. Adam combines the advantages of RMSProp with momentum. ### Hyper

Read More
Weight Initialization in Deep Learning Neural Networks

Thank you for sharing these valuable study notes and reference materials! Indeed, the way weights are initialized in deep learning has a significant impact on the model's performance. Using appropriate methods can ensure that all neurons in the network work effectively in the early stages of training. If you have any specific questions or need further explanation on a step, concept, or method—such as how to adjust hyperparameters or understand the specific process of backpropagation—please feel free to let me know. I will do my best to help you better understand and master this knowledge. Additionally, if you wish to explore more knowledge points in deep learning, here are some extended reading suggestions:

Read More
The Use of Regularization in Deep Learning Neural Networks

This article provides a detailed introduction to three commonly used regularization techniques in deep learning: L2 regularization, Dropout, and a 3-layer network model with regularization. It also enhances the performance of neural networks on the MNIST dataset by implementing these methods. The article includes step-by-step explanations of the code and result analysis. ### Summary of Main Content #### Model Introduction The article first introduces three common regularization techniques: 1. **L2-Regularization**: Reduces model complexity by penalizing weights. 2. **Dropout**: By randomly deactivating

Read More
Implementing a Simple Web Crawler with Python2
2018-04-10 309 views Other web crawler Python CSDN Blog

This project is a simple web crawler designed to scrape relevant content from CSDN blogs and save it as HTML files. It includes the basic process of a crawler: crawling, parsing, and storage. ### Crawling Process 1. **Scheduler (`spider_main.py`)**: - This is the entry point of the entire project. - It calls `HtmlOutputer` to output data, `Downloader` to download web page content, and `HtmlParser` to parse the downloaded content (parsing logic continues...).

Read More
Binary Classification of Cats Using Logistic Regression

The code you provided is a complete process for implementing a logistic regression model from scratch, and it also includes additional features to test different learning rates and predict your own images. Here's a brief description of the features you've implemented: 1. **Data Preparation**: - Read and preprocess the MNIST handwritten digit recognition dataset. - Convert each image from a 2D (64, 64) array to a 1D vector. 2. **Model Construction and Training**: - Implemented some key functions for logistic regression, such as parameter initialization, forward propagation, and backward propagation

Read More
Color Binary Classification Using Neural Networks with Hidden Layers

Your code well demonstrates how to implement an artificial neural network with hidden layers to solve a binary classification problem, and you've added detailed comments explaining each step. Below, I will make some modifications and optimizations to this code, along with additional suggestions. ### Modifications and Optimizations 1. **Import Necessary Libraries**: Ensure all required libraries are correctly imported. 2. **Parameter Initialization**: In the `initialize_parameters` function, include `n_h` as an input parameter. 3. **Gradient Descent Loop Modification** (Note: The original content was cut off here; the translation reflects the provided text.)

Read More
Building a Deep Neural Network for Cat Binary Classification

Your code and explanations are very detailed, covering the entire process from data loading, preprocessing to model construction and training, and also involving the learning process of deep neural networks and their performance evaluation. The following are some supplementary notes and suggestions for your notes: ### 1. Dataset Download In actual use, it is usually necessary to ensure that the MNIST or other specified datasets have been downloaded. To facilitate readers, you can embed the data loading code directly into the script in advance and provide the dataset download link or detailed instructions on how to obtain it. ```python import os ```

Read More
Implementing Common Deep Learning Functions with Python's Numpy

Your notes are very detailed and cover multiple important concepts and techniques in deep learning, including activation functions, loss functions, etc. They truly help beginners understand and master these basic knowledge. ### 1. Activation Functions You described several common activation functions (Sigmoid, tanh, ReLU), their characteristics, and provided mathematical formulas and Python code implementations. This is a great starting point!

Read More
Theoretical Knowledge Points of "Neural Networks and Deep Learning"

This note covers some key concepts and formulas from Professor Andrew Ng's deeplearning.ai course series. Below is a categorized summary and supplementary explanation of these contents: ### 1. Fundamentals of Neural Networks #### 1.1 Single-Layer Neural Network - **tanh Activation Function**: For inputs close to 0, its gradient approaches its maximum value (1). As inputs move away from 0, the gradient approaches 0. - **Weight Initialization**: Use `W = np.random.randn(layer_size_prev, lay` (Note: The original text appears truncated here)

Read More
My Learning Journey with PaddlePaddle - Note 13: Deploying PaddlePaddle to a Website Server

This tutorial provides a detailed introduction to using PaddlePaddle for basic image classification tasks and deploying the resulting model to a web service. Below is a summary of the tutorial content and some improvement suggestions: ### Summary 1. **Environment Preparation**: - Install necessary libraries such as PaddlePaddle and Flask. - Set up the development environment. 2. **Data Preprocessing**: - Read and preprocess images, including converting to grayscale and resizing. 3. **Model Construction and Training**

Read More
Notes on "My PaddlePaddle Learning Journey" ⑫ — Using the Visualization Tool VisualDL

This note provides a detailed introduction to how to use PaddlePaddle and VisualDL for the visualization of convolutional neural network (CNN) training. The following are the key points summarizing the content of the note: ### Visualizing CNN Training and Training Process with PaddlePaddle and VisualDL #### 1. Preparation - **Environment Installation**: Ensure that Python, PaddlePaddle, and VisualDL are installed. - **Dependency Library Import**: ```python

Read More
Notes on "My Learning Journey with PaddlePaddle" XI – Using the New Version of Fluid

Your notes are very detailed and comprehensive, covering the entire process from installing PaddlePaddle to using it for image recognition. You also mentioned many important details, such as changes in APIs and the differences between model saving and loading, which are extremely valuable resources for beginners. I would like to further expand on these contents and provide some suggestions to help readers better understand and apply this knowledge. ### 1. Installing PaddlePaddle The installation section is very clear, but it could consider adding more information about different environments (such as Windows, macOS)

Read More
Notes on "My PaddlePaddle Learning Journey" - Custom Image Dataset for Object Detection

From your notes, we can see that you have detailedly introduced the process of implementing object detection using PaddlePaddle. The following is a summary of the key points in the notes and some supplements: ### Overview of Object Detection Process 1. **Data Preprocessing**: The dataset is the Pascal VOC 2012 version, which includes a training dataset for license plate recognition. 2. **Model Training**: - Construct the VGG-16 network structure. - Define the Loss function and optimizer. 3. **Evaluation and Inference**: - Use the test

Read More
Notes on "My PaddlePaddle Learning Journey" – Implementing Object Detection Using the VOC Dataset

### Chapter 10: Implementing Object Detection with Custom Image Datasets In PaddlePaddle, we can not only quickly deploy object detection tasks using pre-trained models but also train our own specialized object detection models with custom datasets. This chapter will introduce how to perform object detection using PaddlePaddle. #### 1. Preparing the Environment Ensure that PaddlePaddle has been installed and that you are familiar with basic PaddlePaddle operations (including installation, configuration, etc.). You can check if it has been successfully installed using the following command.

Read More
Notes on "My Learning Journey with PaddlePaddle" (VIII) — Scene Text Recognition

This note provides a detailed introduction to implementing license plate character recognition using PaddlePaddle. Each step, from data preparation, model design to training and prediction, is described in detail. The following are the main contents and key points of the note: 1. **Dataset Preparation**: - Utilizes the Stanford-Online-Vehicle-Dataset (SOVD). - Processes images and extracts license plate characters. 2. **Model Design**: - Designed an end-to-end

Read More
Notes on "My PaddlePaddle Learning Journey" VII——End-to-End License Plate Recognition

This project mainly introduces how to use the PaddlePaddle framework to train a license plate recognition model. Below, I will summarize the key steps and concepts and provide some optimization suggestions. ### Summary of Key Steps 1. **Data Preparation**: - Collect and preprocess license plate images. - Create a label dictionary to map characters to indices. 2. **Model Construction**: - Use the PaddlePaddle framework to create an end-to-end recognition model. - The model includes an input layer, convolutional layers,

Read More
Notes on "My Learning Journey with PaddlePaddle" – End-to-End Recognition of Verification Codes

This article provides a detailed introduction to the process of license plate recognition using PaddlePaddle, covering installation of the environment, reading the dataset, building the model, as well as training and testing. Below are summaries of several key points from the article: ### 1. Environment Setup The author first created a virtual environment for PaddlePaddle and configured the CUDA/CUDNN version. ### 2. Dataset Preparation A dataset containing a large number of license plate images was used. These data are publicly available on GitHub, and each license plate has a corresponding label. The author parsed the files

Read More
Notes on My PaddlePaddle Learning Journey V——Captcha Recognition

Your tutorial provides a detailed introduction to using PaddlePaddle for captcha recognition, covering steps from dataset preparation, model design to final training and prediction. This series of steps is highly suitable for understanding and learning the basic processes and techniques of deep learning, especially its applications in the field of OCR (Optical Character Recognition). ### Code Structure Analysis 1. **Data Preprocessing**: - The `read_file` function is used to read image files and convert them into a format suitable for model input. - `load_and_tr

Read More
Notes on "My PaddlePaddle Learning Journey" IV — Recognition of Custom Image Datasets

This series of notes mainly introduces how to implement a simple image recognition task using PaddlePaddle, including data preparation, model construction and training, as well as result prediction. The following is a summary of the main content of each part: ### 1. Environment Setup and Initial Configuration - **Environment Configuration**: First, install Python 3 and ensure it runs properly. - **Download Preprocessing Script**: Use the `DownloadImages.py` script to batch-download images to be recognized from Baidu Images. This script can perform downloads based on keywords (the original text is truncated here).

Read More
Notes on "My Learning Journey with PaddlePaddle" III — CIFAR Color Image Recognition

This project is a CIFAR-10 image classification model implemented using PaddlePaddle, with a clear code structure and detailed comments. Below is a brief explanation of the main functions and principles of each part: ### 1. `vgg.py` This is a file containing the definition of the VGG network. VGG is a classic convolutional neural network architecture, and here it is implemented in PaddlePaddle. #### Main Content: - **Defines the VGG network structure**: Including multiple convolutional layers, pooling layers, and fully

Read More
Notes on "My Learning Journey with PaddlePaddle" - MNIST Handwritten Digit Recognition

Your code is very detailed and already covers the entire process from training to prediction. Below, I will supplement and optimize several key points to help you better understand and use PaddlePaddle. ### 1. **Install Dependencies** Ensure you have installed the necessary libraries: ```bash pip install paddlepaddle numpy pillow ``` ### 2. **Code Improvements and Annotations** #### `infer.py` The following is for your provided `in ```

Read More
Notes on "My Learning Journey with PaddlePaddle" — Part 1: Installation of PaddlePaddle

This note provides a detailed introduction to how to install and use PaddlePaddle (now referred to as Paddle) and demonstrates how to perform MNIST handwritten digit recognition through a specific example. Below is a summary of the note along with some supplementary information: ### Installing PaddlePaddle 1. **Python Environment Preparation**: - Ensure that Python and pip are already installed. 2. **Installation via pip**: ```bash pip inst ``` (Note: The original code snippet for installation appears to be truncated as "pip inst". Typically, the full command would be something like `pip install paddlepaddle` or a version-specific command for GPU/CPU.)

Read More